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c© Società Italiana di Fisica

Springer-Verlag 2000

Parton counting: physical and computational complexity
of multi-jet production at hadron colliders

P.D. Draggiotis1,2,a, R. Kleiss1,b

1 University of Nijmegen, Nijmegen, The Netherlands
2 Institute of Nuclear Physics, NCSR ∆ηµóκ�ιτoς, 15310 Athens, Greece
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Abstract. We present an enumeration of all possible amplitudes that contribute to an n-jet process in
QCD. We estimate the number of amplitudes for large number of jets and determine the actual number
of amplitudes to be calculated, which is smaller due to relabelling among (massless) quark flavours.

1 Introduction

With the advent of high-energy hadron colliders such as
the Tevatron and the LHC, there arises a need for accurate
QCD calculations of amplitudes of increasing complexity,
either as problems in their own right, or as possible back-
grounds to other physics. The complexity becomes appar-
ent either in the number of loops to be considered, or in
the number of external legs in the diagrams: the present
paper aims to deal with the latter of these issues. In recent
years there has been considerable progress in the computa-
tion of multi-leg QCD amplitudes [2–4]. Essentially based
on the earlier work of [5,6], these new algorithms employ
the recusrive structure of the Schwinger-Dyson equations
to express the full amplitude in terms of smaller subam-
plitudes in the essentially most compact way, thereby re-
ducing the computational complexity of these amplitudes
from roughly k! to about 3k, where k is the number of
external legs. This enormous improvement has led to the
becoming feasible of amplitudes with as many as 8 or 9
outgoing partons.

Another issue then arises, that of summing the contri-
butions of all possible QCD processes to a given multi-jet
final state. As we shall show, the number of QCD ampli-
tudes contributing to the probability of an observed event
increases very rapidly with the number of jets, so that
the following questions become relevant. How many ampli-
tudes contribute precisely? What is the asymptotic form
of this number for large multiplicity? To what extent is
the folk-lore that the purely gluonic amplitude dominates
the cross section still valid? Given that many amplitudes
can be related to each other by a simple relabelling of
the quark flavours, how many distinct amplitudes have to
be computed? These are the questions addressed in this
paper.

a e-mail: petros@sci.kun.nl
b e-mail: kleiss@sci.kun.nl

2 Physical complexity:
contributing amplitudes

Under the assumption that the various (anti)quark types
and gluons cannot be distinguished experimentally, and
that all these parton types are (essentially) massless, the
only information experimentally available about any given
event is the configuration of the observed momenta. We
shall denote such an event by its momenta as follows:

p1 + p2 → q1 + q2 + q3 + · · ·+ qn ,

where n outgoing partons/jets are observed. To obtain
the total probability density for this event in phase space,
one has to consider all possible 2 → n QCD amplitudes1,
viewed here as functions of 2 + n momentum arguments,
and assign the observed momenta to these arguments in
all possible ways without double counting. Note that, due
to the composite nature of the incoming hadrons, also the
initial state may require more than one assignment: for
instance, a quark-gluon initial state q(p1)g(p2) is to be
counted as distinct from q(p2)g(p1), whereas of course the
purely gluonic initial state g(p1)g(p2) is counted only once.
Similarly, if the final states contains m quarks of a certain
type, a corresponding factor 1/m! has to be applied. In
what follows we shall denote the number of (essentially)
massless quarks in the final state by f , so that f = 4
at relatively low momenta where the b quark might be
identifiable, f = 5 typically for QCD studies at the LHC,
and f would be 6 at some future multi-hundred TeV col-
lider. The number of flavours contributing appreciably in
the initial state is denoted by j, so that j = 3 would be
appropriate if the charm quark structure function can be
neglected, and j = 4 if it is included. We shall, however,
keep to general j and f as much as possible.

1 Of course, squared and spin/colour-summed and -averaged
in the usual way
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2.1 Arrangement of the initial states and final states

The various possibilities for the initial states are:

– gg Obviously, there is only one possibility for the ini-
tial state. The final state can be anything so there are
n partons in the final state.

– qiq̄i If we have j flavours then there are 2j possibilities
for the initial state and n partons to be distributed in
the final state.

– gqi , gq̄i There are 2j initial states as in the previous
case. For the final state, we know that there must at
least one qi or q̄i so there are (n−1)+qi or (n−1)+ q̄i
partons.

– qiqi , q̄iq̄i For the scattering of identical quarks (anti-
quarks), there are j initial states and since the same
partons must appear in the final state we can have
n− 2 partons plus the initial quarks or anti-quarks.

– qiqk , q̄iq̄k , i �= k For the scattering of different
quarks (anti-quarks) we have j(j − 1) possibilities for
the initial state, and again n−2 partons plus the initial
quarks (anti-quarks), for the final state.

– qiq̄k , i �= k For this final case we have 2j(j−1) initial
states and n− 2 partons plus the quark and the anti-
quark in the final state.

All of the above can be summarized in the following table.

Initial States # possibilities Final States

gg 1 n

qiq̄i 2j n

gqi 2j (n− 1) + qi
gq̄i 2j (n− 1) + q̄i
qiqi j (n− 2) + qi + qi
qiqj , i �= j j(j − 1) (n− 2) + qi + qj
q̄iq̄i j (n− 2) + q̄i + q̄i
q̄iq̄j , i �= j j(j − 1) (n− 2) + q̄i + q̄j
qiq̄j , i �= j 2j(j − 1) (n− 2) + qi + q̄j

where i, k = 1, . . . , j. From the second column we can read
off the total number of initial-state momentum configura-
tions:

1+3(2j)+j+j(j−1)+j+j(j−1)+2j(j−1) = (1+2j)2 (1)

From this table we can arrange four different groups of
initial states, which differ in the flavour structure of their
final states. They are shown in the following table:

Group Initial state # of final states

A gg, qiq̄i A(n)
B gqi, gq̄i B(n)
C qiqi, q̄iq̄i C(n)
D qiqk, q̄iq̄k, qiq̄k, i �= k D(n)

2.2 Counting of the final states

Group A The distinct possibilities for flavourless final
states are:

n = n0∗(g)+n1∗(q1q̄1)+n2∗(q2q̄2)+· · ·+nf ∗(qf q̄f ) (2)

where n0 is the number of gluons g and n1, n2, . . . , nf are
the numbers of qf and q̄f quarks with different flavour f .
The number of different processes A(n) is the number of
the various dinstinct ways to distribute n different final
momenta among n partons:

A(n) =
∑

n0,n1,...,nf ≥0

(n)!
(n0)!(n1)!2(n2)!2 · · · (nf )!2

×Θ(n0 + 2n1 + 2n2 + · · ·+ 2nf = n) (3)

where Θ(a = b) = δa,b. We can evaluate this number by
forming the generating function:

A(x) =
∑
k≥0

xn

n!
A(n)

=
∑

n0,n1,...,nf ≥0

xn0

n0!
x2n1

(n1)!2
x2n2

(n2)!2
· · · x

2nf

(nf )!2

=


∑

n≥0

xn

n!





∑

n≥0

x2n

(n)!2




f

= ex · I0(2x)f (4)

where I0(x) is the modified Bessel function of the first
kind and zeroth order [1].

Group B All the possible final states for this case have a
single net flavour, and can be written as follows

n = n0 ∗ (g) + n1 ∗ (q1q̄1) + n2 ∗ (q2q̄2) + · · ·
+nf ∗ (qf q̄f ) + qi (5)

The number of different processes B(n) is:

B(n) =
∑

n0,n1,...,nf ≥0

(n0 + 2n1 + 2n2 + · · ·+ 2nf + 1)!
n0!(n1 + 1)!(n1)!(n2)!2 · · · (nf )!2

×Θ(n0 + 2n1 + 2n2 + · · ·+ 2nf + 1 = n) (6)

This gives the generating function

B(x) =

∑

n≥0

xn

n!





∑

n≥0

x2n

(n)!2




f−1 
∑

n≥0

x2n+1

(n)!(n+ 1)!




= ex · I0(2x)f−1 · I ′
0(2x) (7)

where the prime denotes the derivative of the Bessel func-
tion with respect to the argument 2x.
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Group C For this case the final state is

n = 2n0 ∗ (g) + n1 ∗ (q1q̄1) + n2 ∗ (q2q̄2) + · · ·
+nf ∗ (qf q̄f ) + 2 ∗ (qi) (8)

and the number of possibilities is

C(n) =
∑

n0,n1,...,nf ≥0

(n0 + 2n1 + 2n2 + · · ·+ 2nf + 2)!
n0!(n1 + 2)!(n1)!(n2)!2 · · · (nf )!2

×Θ(n0 + 2n1 + 2n2 + · · ·+ 2nf + 2 = n) (9)

The generating function is

C(x) =
∑
n≥0

xn

n!
C(n) = exI0(2x)f−1

·{2I ′′
0 (2x)− I0(2x)} (10)

Group D The derivation goes through as in the previous
cases and the result is

D(x) =
∑
n≥0

xn

n!
D(n) = exI0(2x)f−2 · (I ′

0(2x))
2 (11)

The total number of possibilities for the final state can
now be determined:

G(n) = (1 + 2j)A(n) + 4jB(n) + 2jC(n)
+4j(j − 1)D(n) (12)

with the generating function

G(x) =
∑
n≥0

xn

n!
G(n)

= ex{(1 + 2j) I0(2x)f + 4j I0(2x)f−1 I ′
0(2x)

+2j I0(2x)f−1 (2I ′′
0 (2x)− I0(2x))

+4j(j − 1) I0(2x)f−2 (I ′
0(2x))

2 } (13)

We can put this in a more compact form:

G(x) = exI0(2x)f−j

(
1 +

d

dx

)2

I0(2x)j (14)

To get the number of processes we expand the generating
function G(x) and pick out the relevant coefficients. For
example, for f = 3, 4, 5 flavours we have:

Total number of amplitudes
f = 3 f = 4

n j = 2 j = 3 j = 2 j = 3 j = 4

2 71 127 81 141 217
3 299 511 377 625 921
4 1,763 3,301 2,645 4,867 7,761
5 8,955 16,297 15,325 27,087 41,889
6 54,353 103,279 113,733 213,879 345,465
7 304,701 570,367 745,421 1,364,811 2,162,617
8 1,879,723 3,595,177 5,704,061 10,836,831 17,605,249

Total number of amplitudes
f = 5

n j = 2 j = 3 j = 4 j = 5

2 91 155 235 331
3 455 739 1,071 1,451
4 3,647 6,601 10,419 15,101
5 23,255 40,157 61,059 85,961
6 200,473 372,719 598,005 876,331
7 1,470,061 2,636,375 4,118,865 5,917,531
8 13,229,719 24,937,645 40,333,059 59,415,961

2.3 Gluonic contributions

An interesting question that arises is the issue of contri-
bution of gluonic processes, compared to the total number
of processes, since often the purely gluonic process is as-
sumed to be typical or ‘dominant’. In particular we would
like to examine to what degree purely gluonic amplitudes
dominate over other kinds of processes, since gluons have a
different color charge than quarks2. To this end we assign
to each external gluon an additional factor k, resulting in
a modification of the generating function (14):

Gk(x) = ekxI0(2x)f−j

(
k +

d

dx

)2

I0(2x)j (15)

The corresponding generating function for purely gluonic
processes would be:

G0
k(x) = k

2ekx (16)

We may compare the coefficients of the expansion of the
two generating functions. This can be seen in the graph
that follows, where we have plotted the ratio G0

k,n/Gk,n

of the coefficients, for number of jets ranging from n = 2
up to n = 8, against k, and for the particular case of
f = 3, j = 3. Notice that the ratio approaches one as the
factor k grows larger, but decreases with n (see Fig. 1).
In order to estimate how large k has to be to make the
gluonic amplitude the dominant one, we look for values
of k that give G0

k,n/Gk,n = 1/2. These can be seen in the
table that follows, for the case f = 3, j = 3 again and for
various numbers of jets.

n 2 3 4 5 6 7 8 9

k 5.72 7.13 8.47 9.78 11.04 12.27 13.48 14.67

Another extension would be to account for the fact that
the gluonic structure function is typically larger than that
for a quark. Then the generating function becomes:

GS(x) = exI0(2x)f−j

(
S +

d

dx

)2

I0(2x)j (17)

2 Note that we do not address the question of the singularity
structure of gluonic versus other amplitudes
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where S denotes the gluon structure function enhance-
ment factor. We see that this is a monotonically increas-
ing, quadratic function of S. For large S the generating
function can be approximated by

GS(x) = S2exI0(2x)f (18)

The coefficients of GS(x) may be written Gn = CnS
2 where

the Cn depend on n. We can estimate the ‘strength’ of
the ‘S-extended’ gluonic amplitudes compared to purely
gluonic processes, G0

n = S2, by computing the ratio r =
lims→∞ G0

n/Gn. These ratios are tabulated below:

The ratio G0
n/Gn

n f = 3 f = 4 f = 5

2 0.1428 0.1111 0.0909
3 0.0526 0.40 0.0322
4 0.0078 0.0046 0.0030
5 0.0019 0.00108 0.00068
6 0.0003 0.00012 0.000066
7 0.000061 0.000023 0.000011
8 0.968 10−5 0.289 10−5 0.114 10−5

We conclude that for sizeable n the purely gluonic ampli-
tude gives only a very small contribution.

2.4 Asymptotic results

It may be interesting to estimate the number of ampli-
tudes for large number of jets. To this end, we would like
to obtain the asymptotic form of the generating function
for large n. The asymptotic expansion for I0(2z) is

I0(2z) ∼ e2z

√
4πz

∑
n≥0

τn
zn

,

τn =
(2n)!2

64n n!3
, z → ∞. (19)

This expansion holds for Re(z) > 0, but we also have
I0(−z) = I0(z). For the function

f(x) = I0(2x)p (20)

the asymptotic expansion is

f(x) = Ne2pxx− p
2

∑
n≥0

αn

xn
,

αn =
∑

n1,...,np

τn1τn2 · · · τnp
Θ(n1 + · · ·+ np = n) (21)

where N = (4π)−
p
2 . So the derivatives in the generating

function G(x), read:
(
1 +

d

dx

)2

f(x) = f(x) + 2f ′(x) + f ′′(x)

= Ne2pxx− p
2

∑
n≥0

βn

xn
(22)

where

βn = (1 + 2p)2αn − 2(1 + 2p)
(
n+

p

2
− 1

)
αn−1

+
(
n+

p

2
− 1

) (
n+

p

2
− 2

)
αn−2, (23)

and for the generating function we get

G(x) = 1
(4π)f/2 e

x(1+2f) 1
xf/2

∑
n≥0

γn

xn
(24)

where

γn =
∑

n1,n2≥0

Θ(n1 + n2 = n) αn1(f − j) βn2(j) (25)

The first few γ’s for various numbers of initial and final
flavours, are shown in the next table.

Number of flavours γ0 γ1 γ2 γ3

f = 3
j = 2 25 −85/16 249/512 1873/8192
j = 3 49 −189/16 177/512 1337/8192

f = 4
j = 2 25 −15/4 19/32 101/256
j = 3 49 −35/4 15/32 109/256
j = 4 81 −63/4 3/32 93/256

f = 5

j = 2 25 −35/16 409/512 4871/8192
j = 3 49 −91/16 401/512 6143/8192
j = 4 81 −171/16 273/512 6831/8192
j = 5 121 −275/16 25/512 6935/8192

The most important term in the series is of course the first

γ0 = α0(f−j) β0(j) = α0(f−j) (1+2j)2 α0(j) = (1+2j)2

(26)
Keeping only this term in the generating function we have

G(x) ∼ 1
(4π)f/2 e

x(1+2f) 1
xf/2 (1 + 2j)2 , x→ ∞ (27)
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Let us, now, assume that we want to include the first
K terms in the asymptotic expansion of G(x), that is, we
set γj to zero for j > K. The Borel transform

F(x) =

∞∫
0

dy yK+f/2e−yG(xy) (28)

has the expansion

F(x) =
∑
n≥0

Γ (n+K + f/2 + 1)Gn x
n , (29)

where G(x) = ∑
n≥0 Gnx

n; our approach consists in find-
ing the coefficients of F(x) by studying its singularity
structure. The integral for F(x) can be written as

F(x) =
1

(4π)f/2

∞∫
0

dy exp [(−y + xy (2f + 1))]

×
K∑

k=0

γk
yK−k

xk+f/2

=
1

(4π)f/2

K∑
k=0

γk(K − k)!
xk+f/2(1− x(2f + 1))K−k+1 . (30)

This expression is has a pole at x0 = 1/(2f+1). Note that,
due to our use of the factor yK+f/2, the integral (28) is
indeed dominated by large values of xy when x approaches
x0, thus justifying the use of the asymptotic expression
(24). Furthermore, there is of course a similar singularity
which appears when we use negative x values: however,
since that is located at −1/(2f−1) and hence further away
from the origin than x0, this pole will give exponentially
suppressed contributions which will not show up in our
result for Gn. The kth term in the series for F(x) is seen
to contain poles at x = x0 of order up to and including
K − k + 1:

x−k−f/2
(
1− x

x0

)−K+k−1

=
1

x
k+f/2
0

K−k∑
r=0

(k + f/2 + r)!
r!(k + f/2− 1)!

(
1− x

x0

)−K+k+r−1

+regular terms . (31)

The dominant behaviour of the coefficient of xn in the
series expansion of this term is, therefore,

1

x
n+k+f/2
0

K−k∑
r=0

(k + f/2 + r)!
r!(k + f/2− 1)!

(n+K − k − r)!
n!(K − k − r)!

=
1

x
n+k+f/2
0

(n+K + f/2)!
(K − k)!(n+ k + f/2)! . (32)

Inserting this in the expression for F(x) and dividing by
the factor Γ (n + K + f/2 + 1) to get the coefficient Gn,
we see that K drops out from the expression, so that we

may take it as large as we please. The resultant form for
Gn is, therefore

Gn ∼ Gasy
n =

(2f + 1)n+f/2

(4π)f/2

∑
k≥0

γk(2f + 1)k

Γ (n+ k + f/2 + 1)
,

n → ∞. (33)

In order to estimate how accurate this asymptotic expan-
sion is, we have calculated the ratio between the exact
and the “asymptotic” number of processes. The results
are shown in the next table, where we have recorded the
way these numbers improve as we add more terms in the
asymptotic expansion of the generating function. Thus
n0 is such that Gn/Gasy

n is between 0.95 and 1.05 for all
n ≥ n0, when we include only the first term in the expan-
sion, i.e. the term that contains γ0. Similarily, n1 is the
number of jets when we include γ0 and γ1, n2 when we
include γ0, γ1 and γ2, etc.

Number of flavours n0 n1 n2 n3

f = 3
j = 2 26 6 6 6
j = 3 31 5 4 5

f = 4
j = 2 21 8 8 6
j = 3 28 8 6 6
j = 4 31 7 7 7

f = 5

j = 2 11 12 10 8
j = 3 21 12 10 10
j = 4 25 12 10 10
j = 5 29 12 11 10

Note that on some occasions, like for example f = 5, j =
2, the number increases as we add more terms in the ex-
pansion. But this is due to a small increase of the ra-
tio which is improved immediately when we add the next
term.

3 Computational complexity:
distinct amplitudes

In the above we have shown how all amplitudes contribut-
ing to a certain cross section can be enumerated. This
would also, then, be the computational complexity in an
approach where each amplitude is calculated from scratch.
However, there is of course a simplification owing to the
fact that amplitudes that differ only by a relabelling of the
(massless!) quark flavours are equal apart from a trivial
difference in the structure function. It therefore behooves
us to take this simplification into account. Now it must be
kept in mind that, when a quark flavour occurs in the ini-
tial state, we should not relabel it since that is also taken
care of by the factors 2j, j(j−1) etcetera in Table 1. Only
those quark flavours that do not occur in the initial state
may be relabelled. Let us perform the relabelling in such a
way that the relabelled flavours occur in order of increas-
ing multiplicity. As an example, in the process gg → X
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this means that instead of

A(x) =
∑

n0,1,...,f ≥0

n!xn0+2(n1+···+nf )

n0!(n1!)2 · · · (nf !)2
, (34)

we have to determine, rather,

Ãf (x) =
∑
n0≥0

∑
0≤n1≤n2≤···≤nf

n!xn0+2(n1+···+nf )

n0!(n1!)2 · · · (nf !)2
; (35)

likewise, for the process gq → X we have to compute

B̃f (x) =
∑

n0,1≥0

∑
0≤n2≤n3≤···≤nf

× n!xn0+1+2(n1+···+nf )

n0!n1!(n1 + 1)!(n2!)2 · · · (nf !)2
. (36)

It is important to note that those quark flavours that can
be relabelled occur symmetrically in these sums.

The straightforward implementation of such inequali-
ties appears to lead to horrendous complications. An ex-
ception is the following generating function:

Zf (x) =
∑

0≤n1≤n2≤···≤nf

xn1+n2+···+nf

=
1

(1− x)(1− x2)(1− x3) · · · (1− xf )
, (37)

familiar from the theory of partitions [7]. In fact, we may
employ the symmetry in the relabelled indices. To see how
this works, let us symmetrize the case f = 2:

θ(n1 ≤ n2) → 1
2
(θ(n1 ≤ n2) + θ(n2 ≤ n1))

=
1
2
(1 + θ(n1 = n2)) . (38)

This can be obviously extended to larger f : the inequal-
ities lead to a combination of terms with no restriction,
terms where two labels are equated, terms where three
labels are equated, terms where four labels are grouped
in two pairs of equal ones, and so on. Using the function
Z(x), we can convieniently determine the various coeffi-
cients by working out how Zf (x) can be split up in the
corresponding way. Again for the case f = 2, this means
writing

Z2(x) =
α

(1− x)2 +
β

(1− x2)
, (39)

and solving this for general x gives, indeed, α = β = 1/2.
As usual in the theory of partitions, a result for general
f is prohibitively complicated, and therefore we give only
the first few values of f :

Z2(x) =
1
2

1
(1− x)2 +

1
2

1
(1− x2)

,

Z3(x) =
1
6

1
(1− x)3 +

1
2

1
(1− x)(1− x2)

+
1
3

1
(1− x3)

,

Z4(x) =
1
24

1
(1− x)4 +

1
4

1
(1− x)2(1− x2)

+
1
3

× 1
(1− x)(1− x3)

+
1
8

1
(1− x2)2

+
1
4

1
(1− x4)

,

Z5(x) =
1
120

1
(1− x)5 +

1
12

1
(1− x)3(1− x2)

+
1
6

1
(1− x)2(1− x3)

+
1
4

1
(1− x)(1− x4)

+
1
8

1
(1− x)(1− x2)2

+
1
6

1
(1− x2)(1− x3)

+
1
5

1
(1− x5)

. (40)

The result for Ã(x) in these cases is therefore:

Ã1(x) = exH2(x) ,

Ã2(x) =
ex

2
(
H2(x)2 +H4(x)

)
,

Ã3(x) =
ex

6
(
H2(x)3 + 3H2(x)H4(x) + 2H6(x)

)
,

Ã4(x) =
ex

24
(
H2(x)4 + 6H2(x)2H4(x) + 8H2(x)H6(x)

+3H4(x)2 + 6H8(x)
)
,

Ã5(x) =
ex

120
(
H2(x)5 + 10H2(x)3H4(x)

+ 20H2(x)2H6(x)
+ 30H2(x)H8(x) + 15H2(x)H4(x)2

+20H4(x)H6(x) + 24H10(x)) . (41)

These identities can easily be checked explicitly to modest
order in x. Here, we have introduced the class of general-
ized hypergeometric functions

Hm(x) =
∑
n≥0

(
xn

n!

)m

. (42)

Obviously, H1(x) = ex, while H2(x) = I0(2x). The rest of
the cases are treated in a similar fashion. The number of
dinstinct amplitudes that need to be calculated contains:

B̃(x) = I ′
0(2x)Ãf−1(x) (43)

C̃(x) = Ãf−1(x) · {2I ′′
0 (2x)− I0(2x)} (44)

D̃(x) = Ãf−2(x) (I ′
0(2x))

2 (45)

The generating function G̃ for the dinstict amplitudes can
be written as in (13):

G̃(x) = Ãf (x)+ 2I0(2x)Ãf−1(x)+ 4B̃(x)+ 2C̃(x)+ 6D̃(x)
(46)

Note the occurence of coefficients 4 and 6, which are dic-
tated by a careful examination of the differing initial states
that contribute. Some numbers for the case of f = 3, 4, 5
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flavours, are shown in the following table

Total number of dinstinct amplitudes

n f = 3 f = 4 f = 5

2 35 35 35
3 123 123 123
4 777 777 777
5 3, 853 3, 853 3, 853
6 25, 327 31, 087 31, 087
7 139, 975 200, 455 200, 455
8 870, 485 1, 676, 885 1, 999, 445

Note that for small n the numbers coincide: this is due to
the fact that, n = 4, say, allows no room for 4 different
quark flavours to occur in one diagram, and the difference
between f = 3 and f = 4 can therefore only appear for
n ≥ 6. This is reflected in the fact that Ãf (x) coincides
with Ãf−1(x) up to the x2f term.

In order to estimate the large x expansion of the gen-
erating function, as in Sect. 2, we note that Hf (x) is

Hf (x) ∼ e2xf

(4π)1/2x1/2

(
1 +O

(
1
x

))
, x→ ∞ (47)

In the Appendix we show how the asymptotic expansion
can be computed systematically and using this, we can
approximate Ãf (x) by

Ãf (x) =
1
f !
Hf

2 (x) +
1

2(f − 2)!
Hf−2

2 (x)H4(x) (48)

taking into account equations (41) and keeping only the
largest powers of x. The second term in the previous equa-
tion, gives 1√

x
corrections to the leading result. Using this

and the derivatives of the Bessel function

I ′
0(2x) , I

′′
0 (2x) ∼ H2(x)

(
1 +O

(
1
x

))
, x→ ∞

(49)
we can estimate the large x expansion of the functions in
(43–45):

B̃(x) ∼ Ãf−1(x)H2(x)

=
1

(f − 1)!
Hf

2 (x) +
1

2(f − 3)!
Hf−2

2 (x)H4(x) (50)

C̃(x) ∼ Ãf−1(x) (I ′′
0 (2x)− I0(2x))

= Ãf−1(x)H2(x) = B̃(x) (51)

D̃(x) ∼ Ãf−2(x)(I
′
0)

2

=
1

(f − 2)!
Hf

2 (x) +
1

2(f − 4)!
Hf−2

2 (x)H4(x) (52)

and the generating function:

G̃(x) ∼ 1 + 2f + 6f2

f !
Hf

2 (x)

+
6f2 − 22f + 2
2(f − 2)!

Hf−2
2 (x)H4(x) (53)

We can also compute the coefficients of the asymptotic
expansion of G̃(x). To this end we calculate the coefficient
in the expansion of the functions H2(x), H4(x) using the
Borel transform. In particular for H2(x) we define

P (x) = exHf
2 (x) =

∑
n

Knx
n (54)

To estimate the coefficients Kn we perform a transform
on P (x):

∫ ∞

0
dye−yyf/2P (xy) =

∑
n

KnΓ (n+
f

2
+ 1)xn (55)

and we get

Kn ∼ 1
(4π)f/2

(1 + 2f)n+f/2

Γ (n+ f
2 + 1)

(56)

Similarily, for H4(x), approximated by

H4(x) ∼ e4x

(32π3)1/2x3/2 , x→ ∞ (57)

we use Q(x) = exHf−2
2 (x)H4(x) =

∑
n Lnx

n. Performing
a Borel transform we get∫ ∞

0
dye−yy

f
2 + 1

2Q(xy) =
∑

n

LnΓ (n+
f

2
+

3
2
)xn (58)

and for the coefficients

Ln ∼ 1
(4π)f/2

(1 + 2f)n+f/2+1/2
√
2πΓ (n+ f

2 + 3
2 )

= Kn

(
1 + 2f
2π

)1/2 Γ (n+ f
2 + 1)

Γ (n+ f
2 + 3

2 )
(59)

Using these coefficients we can estimate the coefficients
for the generating function in (53).

Acknowledgements. We would like to thank André van
Hameren for lending an extra hand in the counting.

Appendix: Asymptotic form of Hm(x)

Here we study the asymptotic form of the functionHm(x),
which was defined as

Hm(x) =
∑
n≥0

xmn

(n!)m
(60)

One can easily see that the following relation holds

Hm(x) =
1
2πi

∮
dz

z
Hm−1(xz)H1

(x
z

)

=
1

(2πi)m−1

∮
· · ·

∮
dz1
z1

· · · dzm−1

zm−1
H1(xz1)

×H1(xz2) · · ·H1

(
x

z1z2 · · · zm−1

)
(61)
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If we put zi = eiφi the integral becomes

Hm(x) =
1

(2π)m−1

∫ 2π

0
· · ·

∫ 2π

0
dφ1 · · · dφm−1e

xW (62)

where

W = eiφ1 + · · · eiφm−1 + e−i(φ1+···φm−1) (63)

We can estimate this integral by using the saddle point
approximation. The first few derivatives of W are

∂W

∂φk
= i

(
eiφk − e−i(φ1+···φm−1)

)
,

∂2W

∂φk∂φ�
= −

(
eiφkδk� + e−i(φ1+···φm−1)

)
,

∂3W

∂φk∂φ�∂φp
= −i

(
eiφkδk�p − e−i(φ1+···φm−1)

)
,

∂4W

∂φk∂φ�∂φp∂φq
=

(
eiφkδk�pq + e−i(φ1+···φm−1)

)
, . . . (64)

The saddle point can be found from the first derivative,
and it is the solution of the equation

eiφ + e−i(m−1)φ = 0 → eimφ = 1 → φ =
2π
m
k,

k = 0, 1, . . .m− 1 (65)

The value of xW at the saddle point is x((m − 1)eiφ +
eiφ) = mxeiφ. The saddle point that gives the largest real
part of mxeiφ is the one that dominates. We see that the
function has an m-fold symmetry: if we restrict ourselves
to |arg(x)| < π

m the saddle point that dominates is φ = 0.
The derivatives now take the values:

∂2W

∂φk∂φ�
= − (δk� + 1) ,

∂3W

∂φk∂φ�∂φp
= −i (δk�p − 1) ,

∂4W

∂φk∂φ�∂φp∂φq
= (δk�pq + 1) , . . . (66)

and the exponent is

xW = mx− x

2

∑
k�

(δk� + 1)φkφ� − ix

6

∑
k�p

(δk�p − 1)

×φkφ�φp +
x

24

∑
k�pq

(δk�pq + 1)φkφ�φpφq + · · · (67)

This is reminiscent of a zero-dimensional scalar field the-
ory with vertices of arbitrary multiplicity, with the Feyn-
man rules

1
x

(
δµν − 1

m

)
µ ν

,

−ix (δµνα − 1)

µ ν

α

,

x (δµναβ + 1)

µ α

ν β

,

ix (δµναβρ − 1)

µ α

ν β

ρ

,

−x (δµναβρσ + 1)

µ α

ν β

ρ

σ

, . . .

where δµνα = δµνδµα, δµναβ = δµνδµαδµβ , and so on. We
can use the familiar tools of field theory to evaluate the
integral. The first subleading term is computed by taking
into account the two-loop diagrams that contribute. The
result is

1
8

+
1
8

+
1
12

= 0 +
(m− 1)2

8mx
− (m− 1)(m− 2)

12mx
=
m2 − 1
24mx

(68)

where the factors in front of the diagrams are symmetry
factors. The next subleading term can be computed by
including three-loop graphs. Due to the fact that =
0, there are 8 non-zero connected three-loop diagrams, and
in addition to these we must also include the disconnected
diagrams that are shown below. The result for the next
term in the expansion of Hm(x) (including the symmetry
factors shown below) is:

+
1
48

+
1
12

+
1
48

+
1
16

+
1
24

+
1
16

+
1
8

+
1
8

+
1
2

(
+

)2

=
1

1152m2x2 (m− 1)

×(m3 + 289m2 − 1129m+ 1175) (69)

The result for the asymptotic expansion of Hm(x) to this
order is:

Hm(x) ∼ emx√
m(2πx)m−1

{
1 +

m2 − 1
24mx

+
1

1152m2x2

×(m− 1)(m3 + 289m2 − 1129m+ 1175)

+O
(

1
x3

)}
(70)

and higher terms can be obtained in a similar way.
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